7.II: The Neogene Period: A Newborn World

Miocene epoch plate tectonics continental drift
The continents reached their present configuration within the last 10,000,000 years. Land bridges, mountains, ocean currents, polar caps, and climate have directed the large-scale evolution of life worldwide. 1

A.  The Seven Continents and the Seven Seas

B.  Modern Ecosystems

C.  Citations

A.  The Seven Continents and the Seven Seas

Evolution is guided by the environment.  To put our ancestors’ evolution in context, then, we should understand the changes taking place in their world.

By the end of Chapter 8, the continents had reached roughly their present-day configuration.  There were a few key differences.  20 – 40 million years ago, Africa slowly coalesced with Eurasia, forming a permanent juncture at the Arabian Peninsula. 2 Depending on land and sea levels, which fluctuated drastically, there was sometimes a land bridge at the Strait of Gibraltar.  Even the Mediterranean Sea dried out at least twice. 3 Fluctuating sea levels also caused intermittent contact between North America and Europe and / or Siberia. 

South America was isolated for tens of millions of years.  It separated from Antarctica late in the Paleogene Period.  Since that time, a cold circumpolar current has flowed from west to east around the Antarctic.  There was once a warm parallel current between North and South America.  South America’s northward drift closed that gap. The Isthmus of Panama was formed gradually by the forces of plate collision; it was not a lucky strike between two narrow necks of land. 4 By three million years ago, the land bridge was complete. 5 That tiny isthmus had huge ecological and climatic effects.  It joined the terrestrial life of two continents while cleaving marine life into two oceans.  It redirected the warm tropical waters of the Caribbean Sea northward along the coastline of North America. This Gulf Stream brought warmer, moister air to northern Europe, making that region unusually warm for its latitude (consider that London, England is at the same latitude as Calgary, Canada).  The Gulf Stream water and air is carried all the way to the North Pole, where the humidity precipitates and contributes to the northern ice cap.

Asia was the least-developed continent 30 million years ago.  At that time, the southern continent comprised numerous island arcs resembling today’s Indonesia and Philippines.  The processes of plate tectonics, orogeny, erosion and sedimentation gradually filled it out.  The Indian / Asian collision intensified around 25 million years ago, when the oceanic crust was completely subducted and the continents themselves butted up against each other. 6 Since then, India has been slipping beneath Asia, causing a massive uprising of land.  The rugged Himalayan Mountains are the highest in the world.  Just to their north is the Tibetan Plateau, also the world’s highest.  The Himalayan-Tibetan region is now the site of large glaciers and the source of major rivers.  The high wall of land intensifies South Asia’s annual monsoons.  Summer clouds from the Indian Ocean dump all their moisture on the southern face of the Himalayas.  The mountains leave a “rain shadow” to the north, making much of central Asia a vast desert. 

Earth entered a significant cooldown period 15 million years ago.  Carbon dioxide levels fell, 7 perhaps contributed by weathering of carbon-absorbing rock in the Himalayas. 8 The north and south poles both acquired their permanent ice caps during the Neogene, aided by the moist Gulf Stream to the north and the cold polar current to the south.  By reflecting the sun’s heat, ice caps themselves contributed to further cooling.  A cooler Earth is a more seasonal Earth, more prone to snow and ice each winter.

B.  Modern Ecosystems

You probably remember studying the “food chain” in grade school:  carnivores eat herbivores, which eat plants and fungi.  Plant life is the foundation of the ecosystem.  Plants, in turn, adapt to the climate and the geography of their environments.  Thus, as the physical world – the continents, oceans, and atmosphere – made significant changes over the last ten million years, plant life also changed and animals followed suit. The name Neogene means newborn.  This period was so named because of the new ecosystems that followed the climatic changes.      

The general trend over the last few ten-million years has been a cooler, drier Earth with a more diverse range of ecosystems.  Plate tectonics produced major new mountain ranges on virtually every continent – the Rockies, the Andes, the Alps and Himalayas  – which cast rain shadows to the inland side.  The mountains themselves provided a greater range of high-altitude habitats.  As the Earth cooled overall, jungles receded closer to the equator, thus becoming truly the “tropical” forests as we know them today. 1 This had great bearing on our ancestors, who occupied the dense forests of the Paleogene and Neogene. 

In temperate latitudes, rain forests were replaced by woodlands and grasslands.  In everyday speech, we use terms like “forest” and “woodlands” loosely and interchangeably.  To an ecologist, a forest is what we would call a jungle, a densely populated range of evergreen trees.  There is an overarching canopy of broad leaves over most of the forest, with shorter trees underneath.  Forests are humid, shady, and rich in fruit and invertebrates.  Woodlands are less dense and have only one layer of trees, which often lose leaves in the fall.  A woodland floor is sunnier than a forest and more likely to support bushes and grass. 

In plains with insufficient rainfall to support many trees, grasses dominate the landscape, punctuated by occasional groves of trees or bushes.  The Neogene Period is characterized by the spread of grasslands and savannas, the boundaries between woodlands and grasslands.  Grasslands helped accelerate global cooling by absorbing more greenhouse gases and emitting less water vapor than forests. 9      

As the density of trees decreases, so does the density and diversity of animal life.  Woods and grasslands offer a much less luscious menu than forests.  The herbivores that thrive in grasslands have adapted to eating nutrient-poor grasses, seeds, and even bark.  The Paleogene and Neogene periods saw a radiation of grazing hoofed mammals such as camels, horses, and hippos. 10 Hoofed animals were highly successful.  They largely displaced more primitive mammals such as marsupials.  The main exception was Australia, the most isolated continent.  Hoofed animals were unable to reach Australia, so marsupials like kangaroos and wombats remained the dominant mammals. 11 Elephants and sloths are other large herbivores that first appeared in late Paleogene grasslands. 

As for carnivores, the Paleogene Period saw the rise of dogs, cats, and bears. 12 An older form of carnivores, the now-extinct creodonts, also survived into the Neogene.  The grasslands environment produced a literal arms “race” between herbivores and carnivores.  With open space and little cover, running became a vital survival skill.  Today’s antelope and cheetahs, which can run as fast as cars, are the result of tens of millions of years of chase on the African plains.  Our primate ancestors were preyed upon by large cats and creodonts as well as snakes and birds of prey. 13

Marine life also experienced sea changes in this time scale.  The most important new marine ecosystem was the kelp forest, which thrived in shallow seas. 14 Whales and marine birds were at their most diverse during the Neogene.  Newly evolved sea animals included seals, otters, and penguins.           


Back to Section 7.I: Introduction

Top of This Page

Continue to Section 7.III:  Fossil Apes

C.  Citations

  1. World map image NASA Earth Observatory (NASA Goddard Space Flight Center) (Public domain), https://commons.wikimedia.org/wiki/File:Whole_world_-_land_and_oceans.jpg (accessed and saved 10/28/19).
  2. Rasoul Sorkhabi, The Zagros Uplift, GeoExPro 9(1):18-25 (Feb., 2012), http://www.geoexpro.com/articles/2012/05/the-zagros-uplift  (accessed and archived 10/19/19).
  3. Discussed (but not discovered) by Marco Roveri et al., “The Messinian Salinity Crisis:  Past and future of a great challenge for marine sciences”, Marine Geology 352:25-58 (6/01/2014), https://www.sciencedirect.com/science/article/abs/pii/S0025322714000358?via%3Dihub (accessed and saved 1/29/17).
  4. Christine D. Bacon et al., “Biological evidence supports an early and complex emergence of the Isthmus of Panama”, PNAS 112(19):6110-5 (4/27/2015), https://www.pnas.org/content/112/19/6110 (accessed and saved 1/29/2017).
  5. Aaron O’Dea et al., “Formation of the Isthmus of Panama”, Science Advances Vol. 2 no. 8 (8/17/2016), https://advances.sciencemag.org/content/2/8/e1600883 (accessed and saved 8/29/20).
  6. Douwe J.J. van Hinsbergen et al., “Greater India Basin hypothesis and a two-stage Cenozoic collision between India and Asia”, PNAS 109(20):7659-64 (5/15/2012), https://www.pnas.org/content/109/20/7659 (accessed and saved 1/29/2017).
  7. Timothy D. Herbert et al., “Late Miocene global cooling and the rise of modern ecosystems”, Nature Geoscience 9(11):843-847 (Sep., 2016), https://www.nature.com/articles/ngeo2813 (accessed and saved 10/19/19).
  8. R.C.L. Wilson, S.A. Drury, and J.L. Chapman, The Great Ice Age: Climate Change and Life, Routledge, 2000, summarized on p. 176.  For an explanation of how weathering can absorb CO2, see John Mason, “Understanding the long-term carbon-cycle: weathering of rocks – a vitally important carbon-sink”, Skeptical Science, 7/02/2013,  https://www.skepticalscience.com/weathering.html (accessed and saved 5/07/2017, archived 10/20/19).
  9. Gregory Retallack, “Cenozoic Expansion of Grasslands and Climatic Cooling”, The Journal of Geology 109(4):407-426 no. 4 (July 2001), https://www.journals.uchicago.edu/doi/10.1086/320791 (accessed and saved 10/20/19).
  10. Thom Holmes, The Age of Mammals: The Oligocene and Miocene Epochs (Chelsea House Publishers: New York City, 2009), Ch. 4.
  11. Holmes, ibid. at p. 26.
  12. Holmes, ibid. at p. 147.
  13. Donna Hart and Robert Sussman, Man the Hunted, Westview Press, 2005.
  14. David Polly and Brian Speer, “The Miocene Epoch”, University of California Museum of Paleontology, 1994 – 1997,  http://www.ucmp.berkeley.edu/tertiary/miocene.php (accessed and saved 2/19/2017, archived 10/20/19).
Please Like or Share!

Facebook comments preferred; negative anonymous comments will not display. Please read this page / post fully before commenting, thanks!

Powered by Facebook Comments